Exam 1 Solutions.

1. We use the equation $\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}$. Note that $f^{\prime}(x)=3 x^{2} e^{x^{3}}+3$. We also need to compute $f^{-1}(2)$. Since we can't easily solve $y=f(x)$ for x, we try to guess a value of x so that $f(x)=2$; after a little trial-and-error we see that $f(0)=2$. Therefore,

$$
\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{3} .
$$

2. We first take a logarithm of $y=f(x)$:

$$
\ln y=\ln \left(\frac{\left(x^{2}+1\right) \sin ^{2} x}{\sqrt{x^{3}+2}}\right)=\ln \left(x^{2}+1\right)+2 \ln \sin x-\frac{1}{2} \ln \left(x^{3}+2\right) .
$$

Then we take the derivative of both sides: $\frac{y^{\prime}}{y}=\frac{2 x}{x^{2}+1}+\frac{2 \cos x}{\sin x}-\frac{3 x^{2}}{2\left(x^{3}+2\right)}$. Then substituting $f(x)$ yields

$$
f^{\prime}(x)=y^{\prime}=\left(\frac{\left(x^{2}+1\right) \sin ^{2} x}{\sqrt{x^{3}+2}}\right)\left(\frac{2 x}{x^{2}+1}+\frac{2 \cos x}{\sin x}-\frac{3 x^{2}}{2\left(x^{3}+2\right)}\right) .
$$

3. We'll use the substitution $u=1+e^{3 x}$, and so $d u=3 e^{3 x} d x$. Also, if $x=0$ then $u=1+e^{0}=2$ and if $x=\ln 2$ then $u=1+e^{3 \ln 2}=1+8=9$. Therefore

$$
\int_{0}^{\ln 2} \frac{e^{3 x}}{1+e^{3 x}} d x=\int_{2}^{9} \frac{1}{3 u} d u=\left.\frac{1}{3} \ln |u|\right|_{2} ^{9}=\frac{1}{3}(\ln 9-\ln 2) .
$$

4. We use logarithmic differentiation. Letting $y=(\sin x)^{\left(x^{2}+1\right)}$, we have $\ln y=\left(x^{2}+1\right) \ln (\sin x)$. Differentiating both sides (using the chain rule) yields

$$
\frac{1}{y} \frac{d y}{d x}=2 x \ln (\sin x)+\frac{\left(x^{2}+1\right) \cos x}{\sin x} .
$$

Multiply both sides by y to obtain $\frac{d y}{d x}=(\sin x)^{\left(x^{2}+1\right)}\left[2 x \ln (\sin x)+\frac{\left(x^{2}+1\right) \cos x}{\sin x}\right]$.
5. Letting $P(t)$ be the population t years after Jan 01, 2000, the formula for exponential growth is $P(t)=P(0) e^{r t}$. Fill in the value $P(0)=5000$, and solve for r using $P(5)=5500$.

$$
5500=5000 e^{5 r} \Rightarrow r=\frac{1}{5} \ln \left(\frac{5500}{5000}\right)=\frac{1}{5} \ln (1.1)
$$

Then $P(t)=5000 e^{\ln (1.1) t / 5}=5000 \cdot 1.1^{t / 5}$. Now set $t=20$ to obtain the answer. $\quad P(20)=$ $5000 e^{4 \ln (1.1)}=5000(1.1)^{4}$.
6. Set $u=\ln x$. Then $d u=\frac{1}{x} d x$, and the limits are $\ln (1)=0$ and $\ln \left(e^{1 / \sqrt{2}}\right)=1 / \sqrt{2}$. The integral is transformed to

$$
\int_{0}^{1 / \sqrt{2}} \frac{1}{\sqrt{1-u^{2}}} d u
$$

which we recognize immediately to be $\left.\arcsin u\right|_{0} ^{1 / \sqrt{2}}=\pi / 4-0=\pi / 4$.
7. As $x \rightarrow \infty$, both $(\ln x)^{2}$ and $x \rightarrow \infty$, so this is indeterminate of form $\frac{\infty}{\infty}$. Thus we apply l'Hospital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x}=\lim _{x \rightarrow \infty} \frac{2 \ln x \frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{2 \ln x}{x}
$$

But both $2 \ln x$ and $x \rightarrow \infty$ as $x \rightarrow \infty$, so this is still of indetereminate form $\frac{\infty}{\infty}$. So we apply l'Hospital's Rule again:

$$
\lim _{x \rightarrow \infty} \frac{2 \ln x}{x}=\lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1}=\lim _{x \rightarrow \infty} \frac{2}{x}=0
$$

8. We use integration by parts, with $u=x$ and $d v=\sin (2 x)$. Then $d u=d x$ and $v=\frac{-\cos (2 x)}{2}$. Thus

$$
\int x \sin (2 x) d x=\frac{-x \cos (2 x)}{2}-\int \frac{-\cos (2 x)}{2} d x=\frac{-x \cos (2 x)}{2}+\frac{\sin (2 x)}{4}+C
$$

9. Our goal is to do a u-substitution, with $u=\tan x$. Thus, $d u=\sec ^{2}(x) d x$ so we will leave one $\sec ^{2} x$ to become the $d u$, and convert the other $\sec ^{2} x$ into $1+\tan ^{2} x$. So we have:

$$
\int \tan ^{100} x \sec ^{4} x d x=\int \tan ^{100} x\left(1+\tan ^{2} x\right) \sec ^{2}(x) d x=\int u^{100}\left(1+u^{2}\right) d u
$$

We integrate, and then back substitute to get

$$
\int \tan ^{100} x \sec ^{4} x d x=\int u^{100}+u^{102} d u=\frac{u^{101}}{101}+\frac{u^{103}}{103}+C=\frac{\tan ^{101} x}{101}+\frac{\tan ^{103} x}{103}+C
$$

10. Since $(x-1)$ is a polynomial of degree 1 , then we get the term $A /(x-1)$. Secondly, $(x-5)$ is a polynomial of degree 1 , with exponent 2 , hence we get the terms $B /(x-5)$ and $C /(x-5)^{2}$. Finally, $\left(x^{2}+1\right)$ is an irreducible polynomial of degree 2 , so we get the term $(D x+E) /\left(x^{2}+1\right)$. So, the correct form of the partial fraction decomposition of $f(x)$ is

$$
\frac{A}{x-1}+\frac{B}{x-5}+\frac{C}{(x-5)^{2}}+\frac{D x+E}{x^{2}+1} .
$$

11. Let $L=\lim _{x \rightarrow 0^{+}}(\tan (x))^{x}$. Taking logarithm to both sides of the equation, we get

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}}(\tan (x))^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left((\tan (x))^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (\tan (x))=\lim _{x \rightarrow 0^{+}} \frac{\ln (\tan (x))}{1 / x}
$$

Since this is an indeterminate of the form $-\infty / \infty$, by L'Hopital's rule we get

$$
\ln (L)=\lim _{x \rightarrow 0^{+}} \frac{\sec ^{2}(x) /(\tan (x)}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{\sin (x) \cos (x)}
$$

This is again an indeterminate of the form $0 / 0$, by L'Hopital's rule we get

$$
\ln (L)=\lim _{x \rightarrow 0^{+}} \frac{-2 x}{\cos ^{2}(x)-\sin ^{2}(x)}=0 .
$$

Since $\ln (L)=0$ we get $L=1$.
12. Lets calculate the integral using the partial fraction method. The right form for the partial fraction decomposition of $10 /(x-3)\left(x^{2}+1\right)$ is

$$
\frac{10}{(x-3)\left(x^{2}+1\right)}=\frac{A}{x-3}+\frac{B x+C}{x^{2}+1} .
$$

Hence, $10=A\left(x^{2}+1\right)+(B x+C)(x-3)$. Setting $x=3$, we get $10=10 A$, this is, $A=1$. Setting $x=0$, we get $10=1(1)+C(-3)$, this is, $C=-3$. Setting $x=1$, we get $10=(1)(2)+(B-3)(-2)$, this is, $B=-1$. So

$$
\int \frac{10}{(x-3)\left(x^{2}+1\right)} d x=\int \frac{1}{(x-3)}+\frac{-x-3}{\left(x^{2}+1\right)} d x=\int \frac{1}{(x-3)} d x+\int \frac{-x}{\left(x^{2}+1\right)} d x+\int \frac{-3}{\left(x^{2}+1\right)} d x
$$

Now, making the substitution $w=x-3$ on the first integral, we get

$$
\int \frac{1}{(x-3)}=\ln (|x-3|)+C_{1} .
$$

For the second integral, let $u=x^{2}+1, d u=2 x d x$. Hence

$$
\int \frac{-x}{\left(x^{2}+1\right)} d x=-\frac{1}{2} \int \frac{1}{u} d u=\ln |u|=-\frac{1}{2} \ln \left(\left|x^{2}+1\right|\right)+C_{2} .
$$

Finally, for the third integral, we get

$$
\int \frac{-3}{\left(x^{2}+1\right)} d x=-3 \int \frac{1}{\left(x^{2}+1\right)} d x=-3 \arctan (x)+C_{3}
$$

This shows,

$$
\int \frac{10}{(x-3)\left(x^{2}+1\right)} d x=\ln (|x-3|)-\frac{1}{2} \ln \left(\left|x^{2}+1\right|\right)-3 \arctan (x)+C .
$$

13. Since the argument of the integral is of the form $\sqrt{x^{2}+a^{2}}$, we make the substitution $x=3 \tan (\theta) \Rightarrow$ $d x=3 \sec ^{2}(\theta) d \theta$ (and remember to change the limits of integration), which yields,

$$
\int_{0}^{3} \frac{1}{\sqrt{x^{2}+9}} d x=\int_{0}^{\pi / 4} \frac{3 \sec ^{2}(\theta)}{\sqrt{9 \tan ^{2}(\theta)+9}} d \theta
$$

We factor the 9 out of the square root and then make the substitution $1+\tan ^{2}=\sec ^{2}$ to get

$$
\left.\int_{0}^{3} \frac{1}{\sqrt{x^{2}+9}} d x=\int_{0}^{\pi / 4} \frac{3 \sec ^{2}(\theta)}{3 \sqrt{\sec ^{2}(\theta)}} d \theta=\int_{0}^{\pi / 4} \sec (\theta) d \theta=\ln \right\rvert\, \sec (\theta)+\tan (\theta) \|_{0}^{\pi / 4}
$$

where in the last equality, we applied the last formula from the 'list of useful trigonometric formulas' at the end of the exam. Evaluating, we get

$$
\int_{0}^{3} \frac{1}{\sqrt{x^{2}+9}} d x=\ln |2 / \sqrt{2}+1|-\ln |1+0|=\ln |\sqrt{2}+1|
$$

